О САЙТЕ
Добро пожаловать!

Теперь вы можете поделиться своей работой!

Просто нажмите на значок
O2 Design Template

ФНГ / РЭНГМ / Определение гидравлики. Основные понятия и определения. Сплошная среда.

(автор - student, добавлено - 26-08-2015, 10:38)

Определение  гидравлики. Основные понятия и определения. Сплошная среда.

Гидравликой называется прикладная наука, занимающаяся изучением  законов покоя и движения жидких тел и рассматривающая способы  приложения этих законов к решению конкретных технических задач.

 Основные понятия и определения гидравлики:

1)        Жидкость – физическое тело, обладающее большой подвижностью частиц, которая объясняется слабой связью между молекулами. Поэтому жидкости легко изменяют свою форму, т.е. легко деформируются, не дробясь на части, под действием сил самой незначительной величины или, другими словами, обладают  текучестью при приложении к ним незначительных сил сдвига. Жидкость не имеет своей формы, но принимает форму сосуда, в котором она находится.

Все жидкости делятся на капельные и газообразные. Таким образом, под это определение попадают и газы, которые, в отличие от жидкостей в общепринятом смысле этого слова (или капельных жидкостей), называются «упругими» жидкостями.

Капельная жидкость имеет объем, и если объем меньше объема сосуда, то жидкость занимает часть объема сосуда и образует свободную поверхность. В отличие от капельных жидкостей газы, как упругие жидкости, не имеют своих определенных формы и объема. Они всегда занимают весь объем сосуда, в котором находятся.

Жидкости отличаются от твердых тел тем, что они обладают такими свойствами, как адгезия, удельный вес, поверхностное натяжение и упругость насыщенного пара.

2) Идеальная жидкостьжидкость, которая не сжимается под действием давления, не изменяет плотности при изменении температуры и не обладает вязкостью.

3) Сплошная среда – жидкость без пустот, разрывов и трещин, диаметр частиц больше длины свободного пробега молекул . Модель сплошной среды позволяет применять для анализа такой мощный математический аппарат, как дифференциальное и интегральное исчисление.


Ключевые слова -


ФНГ ФИМ ФЭА ФЭУ Яндекс.Метрика
Copyright 2021. Для правильного отображения сайта рекомендуем обновить Ваш браузер до последней версии!