О САЙТЕ
Добро пожаловать!

Теперь вы можете поделиться своей работой!

Просто нажмите на значок
O2 Design Template

ФЭА / АИТ / ОТЧЕТ по учебной практике по сцепиальности автоматизация производственных процессов 2-го курса

(автор - student, добавлено - 15-11-2012, 15:43)
Скачать

Содержание
Введение………………………………………………………………..…………3
Организация и производство буровых работ………………………….……….5
Капитального ремонта скважин……………………………………………….13
Эксплуатация скважин…………………………………………………………16
Заключение………………………………………………………………………22
Список использованной литературы……………………………………….…23

Введение
В рамках учебной практики наша группа 50-61 посетила учебный полигон ЦПК ОАО «Татнефть». Где мы ознакомились с работой буровой установки, изучили ее устройство. Нам рассказали, как проводятся работы по бурению, закачиванию, эксплуатации. Подробно изложили весь цикл от добычи сырой нефти до ее переработки.
Учебный полигон был построен компанией ОАО «Татнефть» для обучения и повышения квалификации своих сотрудников.
ОАО «Татнефть» — одна из крупнейших отечественных нефтяных компаний, осуществляющая свою деятельность в статусе вертикально интегрированной Группы.
На долю Компании приходится около 8% всей добываемой нефти в РФ и свыше 80% нефти, добываемой на территории Татарстана. Акции ОАО «Татнефть» входят в группу наиболее востребованных на ведущих российских фондовых площадках: Лондонской фондовой бирже и в германской системе группы Дойче Бурс АГ.
Миссия компании укрепление статуса международно-признанной, финансово-устойчивой компании, как одного из крупнейших вертикально-интегрированных отечественных производителей нефти и газа, продуктов нефтепереработки и нефтехимии, с обеспечением высокого уровня корпоративной социальной ответственности.
В состав Группы входят:
- нефтегазодобывающие производства ( НГДУ, ЗАО «Татнефть–Самара» и др.);
- нефтегазоперерабатывающие производства ( «Татнефтегазпереработка», ОАО «ТАНЕКО»);
- нефтехимические производства;
- предприятия по реализации нефти, газа, нефтегазопродуктов и нефтехимии;
- блок сервисных структур.
Основная территория деятельности — Российская Федерация. В то же время Компания реализует стратегию эффективного наращивания запасов и расширения территории своего присутствия за пределами РФ. В частности, в 2010 году впервые за свою историю «Татнефть» начала промышленную добычу нефти в Сирии.
Основная ресурсная база компании исторически расположена на территории Республики Татарстан. «Татнефть» последовательно реализует стратегию расширения ресурсной базы и наращивания запасов за счет разведки и добычи на внешних территориях, включая страны СНГ и Ближнего Востока, а также проведения опытно-промышленных работ на татарстанских месторождениях сверхвязкой нефти. По оценке независимой международной консалтинговой компании «Miller & Lents», доказанные разрабатываемые, неразрабатываемые и неразбуренные запасы ОАО «Татнефть» на начало 2011 года составили 836,5 млн тонн нефти.
К приоритетным задачам компании, наряду с укреплением ресурсной базы и стабилизацией уровня добычи, относятся:
- развитие нефтегазоперерабатывающих и нефтехимических мощностей,
- расширение рынков сбыта нефти, газа, нефтехимической продукции,
- дальнейшее развитие собственной сети АЗС под корпоративным брендом.
ОАО «Татнефть» наряду с комплексом нематериальных активов и уникальных технологий в своем дальнейшем развитии делает ставку на эффективное использование ресурсов, оптимизацию управления и производственных процессов. Значимым этапом дальнейшего развития Компании стало формирование нового направления деятельности – производство тепла и электроэнергии. Создание собственного энергетического блока обеспечит потребность «Татнефти» в тепловой и электрической энергии для производственных объектов и позволит Компании закрепить свои позиции на топливо-энергетическом рынке.

Организация и производство буровых работ
В цикл строительства скважины входят:
- подготовительные работы (в ходе подготовительных работ выбирают место для буровой, прокладывают подъездную дорогу, подводят системы электроснабжения, водоснабжения и связи; если рельеф местности неровный, то планируют площадку);
- монтаж вышки и оборудования (производится в соответствии с принятой для данных конкретных условий схемой их размещения; оборудование стараются разместить так, чтобы обеспечить безопасность в работе, удобство в обслуживании, низкую стоимость строительно-монтажных работ и компактность в расположении всех элементов буровой);
- подготовка к бурению;
- процесс бурения;
- крепление скважины обсадными трубами и ее тампонаж (целью тампонажа затрубного пространства обсадных колонн является разобщение продуктивных пластов);
- вскрытие пласта и испытание на приток нефти и газа.
Бурильная колонна (БК) соединяет долото (или забойный двигатель и долото) с наземным оборудованием (вертлюгом).
БК предназначена для следующих целей:
- передачи вращения от ротора к долоту;
- восприятия реактивного момента забойного двигателя;
- создания нагрузки на долото;
- подъема и спуска долота;
- проведения вспомогательных работ (проработка, расширение и промывка скважины, испытание пластов, ловильные работы и т.д.).
БК состоит (рис.2) из свинченных друг с другом ведущей трубы 4, бурильных труб 8 и утяжеленных бурильных труб (УБТ) 12 и 13. Верхняя часть БК, представленная ведущей трубой 4, присоединяется к вертлюгу 1 с помощью верхнего переводника ведущей трубы 3 и переводника вертлюга 2. Ведущая труба присоединяется к первой бурильной трубе 8 с помощью нижнего переводника ведущей трубы 5, предохранительного переводника 6 и муфты бурильного замка 7. Бурильные трубы 8 свинчиваются друг с другом бурильными замками, состоящими из муфты 7 бурильного замка и его ниппеля 9 или соединительными муфтами 10. УБТ 12 и 13 свинчиваются друг с другом непосредственно. Верхняя УБТ присоединяется к бурильной трубе с помощью переводника 11, а нижняя привинчивается через переводник 14 к долоту (при роторном бурении) или к забойному двигателю с долотом.
Для выноса на поверхность выбуренной породы (шлама), применяют промывочные жидкости (буровые растворы). Основная задача промывки - обеспечение эффективного процесса бурения скважин - включает в себя сохранение как устойчивости стенок скважин, так и керна.
Рис. 1. Бурильная колонна:
1 – вертлюг; 2 – переводник вертлюга; 3 – верхний переводник; 4 – ведущая труба; 5 – нижний переводник; 6 – предохранительный переводник; 7 – муфта бурильного замка; 8 – бурильная труба; 9 – ниппель;10 – соединительная муфта;11 – переводник; 12, 13 – утяжелитель бурильных труб; 14 – переводник.
Промывочная жидкость имеет кроме основной функции ряд других:
- Охлаждение и смазка трущихся деталей долота
- Предотвращение обвалов стенок скважины, за счет гидростати-ческого давления столба жидкости; склеивания частиц обваливающихся пород; ограничение попадания фильтрата раствора (водоотдача) в пласты
- Уравновешивание пластового давления нефтегазоносных пластов.
- Смазка бурильных труб, стенок скважины, обсадных труб, частей бурового насоса и т.п.
- Удержание осколков выбуренной породы во взвешенном состоянии и предотвращение выпадения их на забой;
- Обеспечение осаждения песка и частиц выбуренной породы в отстойных емкостях. Таким образом, раствор должен иметь две противоположные особенности: удерживать выбуренную породу во взвешенном состоянии в стволе скважины и в то же время осаждать ее в отстойных емкостях;
- Передача энергии гидравлическим забойным двигателям;
- Передача сигналов от забойных приборов на принимающие приборы на поверхности.
Для химической обработки промывочных жидкостей используют большое число веществ – реагентов, при малых добавках которых существенно изменяются свойства промывочной жидкости.
Все реагенты условно можно подразделить на низкомолекулярные неорганические и высокомолекулярные органические реагенты.
Существует два вида химических обработок: первичная и повторная. В зависимости от горно-геологических условий первичная обработка может быть простой или сложной.
Вскрытие пласта — это комплекс операций для сообщения продуктивного пласта со скважиной. Различают первичное и вторичное вскрытие пласта. Первичное вскрытие — это процесс углубления забоя скважины от кровли до подошвы продуктив¬ного пласта. Вторичное — это создание перфорационных кана¬лов после спуска и цементирования обсадной (эксплуатацион¬ной) колонны. После вскрытия пласта скважину осваивают, вы¬зывая приток жидкости из пласта, восстанавливая (частично) продуктивные характеристики призабойной зоны. От эффектив¬ности операций вскрытия продуктивного пласта и освоения скважин зависит величина притока жидкости из пласта, т. е. эффективность последующей эксплуатации скважин.
Вторичное вскрытие продуктивного пласта производят перфораторами различных конструкций. Существует несколько типов перфораторов: гидропескоструйные, кумулятивные, пулевые, торпедные.
Конструкция эксплуатационной скважины определяется числом рядов труб, спускаемых в скважину и цементируемых в процессе бурения для успешной проводки скважин, а также оборудованием ее забоя. В скважину спускают следующие ряды труб:
- направление – это колонна труб, спускаемая в скважину до некоторой глубины (5-40 м), которая цементируется от устья по всей длине и служит для надежного крепления верхних интервалов и предотвращения размыва устья скважины.
- кондуктор служит для крепления верхних неустойчивых интервалов разреза, изоляции верхних водоносных горизонтов от загрязнения, а также для возможности установки на устье противовыбросового и устьевого оборудования.
- промежуточная обсадная колонна предназначена для крепления и изоляции вышележащих зон, несовместимых по условиям бурения с нижележащими зонами для предотвращения осложнений и аварий при бурении последующих интервалов.
- эксплуатационная колонна крепит и разобщает продуктивные пласты и вышележащие зоны геологического разреза от продуктивных пластов, обеспечивает размещение в ней оборудования для подъема жидкости или закачки необходимых агентов в пласт. Эксплуатационную колонну оборудуют элементами колонной и заколонной оснастки – пакеры, башмак, обратный клапан, центратор, упорное кольцо и т.п. Диаметр труб э/колонны выбирают в зависимости от типоразмера применяемого оборудования.

Рис. 2. Конструкция скважины:
1 – обсадные трубы; 2 – цементный камень; 3 – пласт; 4 – перфорация в обсадной трубе и цементном камне; I – направление; II – кондуктор; III – промежуточная колонна; IV – эксплуатационная колонна.
Конструкция забоя скважины бывает двух типов – открытого и закрытого. Открытый забой, не обсаженный колонной, используют в твердых породах, где исключены обвалы. При закрытом забое продуктивный пласт обсаживают колонной с последующим цементированием и перфорацией.
Промежуточная обсадная колонна предназначена для крепления и изоляции вышележащих зон, несовместимых по условиям бурения с нижележащими зонами для предотвращения осложнений и аварий при бурении последующих интервалов.
Обсадную колонну собирают из обсадных труб либо одного номинального размера (одноразмерная колонна), либо двух номинальных размеров (комбинированная колонна). Трубы подбирают в секции в соответствии с запроектированной конструкцией обсадной колонны.
Разобщение пластов при существующей технологии крепления скважин - завершающий и наиболее ответственный этап, от качества выполнения которого в значительной степени зависит успешное строительство скважины. Под разобщением пластов понимается комплекс процессов и операций, проводимых для закачки тампонажного раствора в затрубное пространство (т. е. в пространство за обсадной колонной) с целью создания там надежной изоляции в виде плотного материала, образующегося со временем в результате отвердения тампонажного раствора. Поскольку в качестве тампонажного наиболее широко применяется цементный раствор, то и для обозначения работ по разобщению используется термин «цементирование».
Цементирование включает пять основных видов работ: приготовление тампонажного раствора, закачку его в скважину, подачу тампонажного раствора в затрубное пространство, ожидание затвердения закачанного материала и проверку качества цементировочных работ.
Физико-химические свойства тампонажных цементов. Тампонажным цементном называется продукт, состоящий из вяжущих веществ (портландцемента, шлака, извести и т. д.), минеральных (кварцевого песка, асбеста, глины, шлака и др.) или органических (отходов целлюлозного производства и др.) добавок, дающих после затворения с водой раствор, а затем камень.
Цементы, применяемые в нефтяной промышленности, должны обладать: 1) замедленным началом схватывания; 2) ускоренным на¬чалом твердения с соответствующей этому моменту высокой проч¬ностью; 3) низкой проницаемостью после схватывания и твердения; 4) большой текучестью; 5) тонкостью помола; 6) высокой плотностью.
Освоение скважины - комплекс технологических операций по вызову притока и обеспечению ее продуктивности, соответствующей локальным возможностям пласта. Цель освоения - восстановление естественной проницаемости коллектора на всем протяжении вплоть до обнаженной поверхности пласта перфорационных каналов и получения продукции скважины, соответствующей ее потенциальным возможностям.
Можно выделить шесть основных способов вызова притока: тартание, поршневание, замена скважинной жидкости на более легкую, компрессорный метод, прокачка газожидкостной смеси, откачка глубинными насосами.
Тартание - это извлечение из скважины жидкости желонкой, спускаемой на тонком (16 мм) канате с помощью лебедки. Желонка изготавливается из трубы длиной 8 м, имеющей в нижней части клапан со штоком, открывающимся при упоре на шток. В верхней части желонки предусматривается скоба для прикрепления каната. Диаметр желонки обычно не превышает 0,7 диаметра обсадной колонны. За один спуск желонка выносит жидкость объемом, не превышающим 0,06 м3.
Поршневание. При поршневании (свабировании) поршень или сваб спускается на канате в НКТ. Поршень представляет собой трубу малого диаметра (25 - 37,5 мм) с клапаном, в нижней части открывающимся вверх. На наружной поверхности трубы (в стыках) укреплены эластичные резиновые манжеты (3 - 4 шт.), армированные проволочной сеткой. При спуске поршня под уровень жидкость перетекает через клапан в пространство над поршнем. При подъеме клапан закрывается, а манжеты, распираемые давлением столба жидкости над ними, прижимаются к стенкам НКТ и уплотняются. За один подъем поршень выносит столб жидкости, равный глубине его погружения под уровень жидкости. Глубина погружения ограничена прочностью тартального каната и обычно не превышает 75 - 150 м. Поршневание в 10 - 15 раз производительнее тартания. Устье при поршневании также остается открытым, что связано с опасностями неожиданного выброса.
Замена скважинной жидкости. Замена осуществляется при спущенных в скважину НКТ и герметизированном устье, что предотвращает выбросы и фонтанные проявления. Выходящая из бурения скважина обычно заполнена глинистым раствором. Производя промывку скважины (прямую или обратную) водой или дегазированной нефтью.
Компрессорный способ освоения. Этот способ нашел наиболее широкое распространение при освоении фонтанных, полуфонтанных и частично механизированных скважин. В скважину спускается колонна НКТ, а устье оборудуется фонтанной арматурой. К межтрубному пространству присоединяется нагнетательный трубопровод от передвижного компрессора.
Освоение скважин закачкой газированной жидкости. Освоение скважин путем закачки газированной жидкости заключается в том, что вместо чистого газа или воздуха в межтрубное пространство закачивается смесь газа с жидкостью (обычно вода или нефть). Плотность такой газожидкостной смеси зависит от соотношения расходов закачиваемых газа и жидкости. Это позволяет регулировать параметры процесса освоения. Поскольку плотность газожидкостной смеси больше плотности чистого газа, то это позволяет осваивать более глубокие скважины компрессорами, создающими меньшее давление.
Освоение скважинными насосами. На истощенных месторождениях с низким пластовым давлением, когда не ожидаются фонтанные проявления, скважины могут быть освоены откачкой из них жидкости скважинными насосами, спускаемыми на проектную глубину в соответствии с предполагаемыми дебитом и динамическим уровнем. При откачке из скважины жидкости насосами забойное давление уменьшается, пока не достигнет величины, при которой устанавливается приток из пласта.

Капитального ремонта скважин
В процессе эксплуатации скважин фонтанным, компрессорным или насосным способом нарушается их работа, что выражается в постепенном или резком снижении дебита, иногда даже в полном прекращении подачи жидкости. Работы по восстановлению заданного технологического режима эксплуатации скважины связаны с подъемом подземного оборудования для его замены или ремонта, очисткой скважины от песчаной пробки желонкой или промывкой, с ликвидацией обрыва или отвинчивания насосных штанг и другими операциями. Все ремонтные работы в зависимости от их характера и сложности разделяют на текущий и капитальный ремонты скважин.
К текущему ремонту относятся следующие работы:
- планово-предупредительный ремонт.
- ревизия подземного оборудования.
- ликвидация неисправностей в подземной части оборудования.
- смена скважинного насоса (ПЦЭН или ШСН).
- смена способа эксплуатации, переход с ПЦЭН на ШСН или наоборот и пр.
- очистка НКТ от парафина или солей.
- замена обычных НКТ на трубы с покрытием (остеклованные трубы).
- изменение глубины подвески насосной установки.
- подъем скважинного оборудования перед сдачей скважины в консервацию.
- специальный подземный ремонт в связи с исследованиями продуктивного горизонта.
- некоторые виды аварийных ремонтов, такие как заклинивание плунжера, обрывы штанг, обрывы скребковой проволоки или электрокабеля.
Перечисленные ремонтные работы, а также и ряд других выполняются бригадами подземного ремонта скважин, организуемыми в нефтедобывающем предприятии. Бригады подземного ремонта работают круглосуточно (три смены) либо в две смены и даже в одну. В состав одной вахты входят обычно три человека: оператор с помощником, работающие у устья скважины, и машинист, управляющий подъемной лебедкой.
К капитальному ремонту скважин относятся ремонтные работы, для выполнения которых приходится привлекать более сложную технику, вплоть до использования бурильных установок. К капитальному ремонту, в частности, относятся следующие работы:
- ликвидация сложных аварий, связанных с обрывом штанг, труб, кабеля и образованием в скважине сальников.
- исправление нарушений в обсадных колоннах.
- изоляция пластовых вод.
- работы по вскрытию пласта и освоению скважин в связи с переходом на другой горизонт.
- забуривание второго ствола.
- разбуривание плотных соляно-песчаных пробок на забое.
- гидравлический разрыв пласта.
- солянокислотные обработки скважин.
- термическая обработка забоя скважин.
- установка временных колонн - «летучек», намывка и установка фильтров, ликвидация прихватов труб, пакеров и смятии обсадных колонн.
-операции по ликвидации скважин.
При подземном ремонте глубоких скважин применяют эксплуатационные вышки и мачты, стационарные или передвижные, предназначенные для подвески талевой системы, поддержания на весу колонны труб или штанг при ремонтных работах, проводимых на скважине.
Стационарные вышки и мачты используются крайне нерационально, т.к. ремонтные работы на каждой скважине проводятся всего лишь несколько дней в году, всё остальное время эти сооружения находятся в бездействии. Поэтому целесообразно использовать при подземном ремонте подъемники, несущие собственные мачты. Транспортной базой их служат тракторы и автомобили.
Подъемник — механическая лебедка, монтируемая на тракторе, автомашине или отдельной раме. В первом случае привод лебедки осуществляется от тягового двигателя трактора, автомашин, в остальных от самостоятельного двигателя внутреннего сгорания или электродвигателя.
Агрегат — в отличие от подъемника оснащен вышкой и механизмом для ее подъема и опускания.

Эксплуатация скважин
СХЕМА СКВАЖИННОЙ ШТАНГОВОЙ УСТАНОВКИ
СШНУ — комплекс оборудования для механизированной добычи жидкости через скважины с помощью штангового насоса, приводимого в действие станком-качалкой.

Рис. 3. СШНУ:
1 - станок-качалка; 2 - полированный шток; 3 - колонна штанг; 4 - обсадная колонна; 5 - насосно-компрессорные трубы; 6 - цилиндр насоса; 7 - плунжер насоса; 8 - нагнетательный клапан; 9 - всасывающий клапан.

Штанговый насос (рис.4) опускается в скважину ниже уровня жидкости. Состоит из цилиндра, плунжера, соединённого со штангой, всасывающих и нагнетательных клапанов. Цилиндр невставного штангового насоса опускается на колонне насосно-компрессорных труб, а плунжер — на колонне штанг внутри насосно-компрессорных труб; цилиндр вставного штангового насоса опускается вместе с плунжером на штангах и закрепляется на замковой опоре, установленной на конце насосно-компрессорных труб или на пакере; штанговый насос большого диаметра опускается целиком на колонне насосно-компрессорных труб и соединяется с колонной штанг через сцепное устройство. Существуют также: штанговые насосы с подвижным цилиндром и неподвижным плунжером, с двумя ступенями сжатия, с двумя цилиндрами и плунжерами, с камерой разрежения и др. Штанги соединяются в колонну с помощью муфт. Длина штанги 8-10 м, диаметр 12,7-28,6 мм. Используются также полые неметаллические штанги или непрерывные колонны штанг, наматываемые при подъёме на барабан. Длина колонны до 2500 м. При длине свыше 1000 м колонна штанг делается ступенчатой, с увеличивающимся кверху диаметром для уменьшения массы и достижения равнопрочности.
Станок-качалка преобразует вращение вала двигателя в возвратнопоступательное движение, передаваемое колонне штанг через гибкую подвеску и полированный шток. Применяются в основном механические редукторно-кривошипные, балансирные и безбалансирные, а также башенные и гидравлические станки-качалки. Максимальная длина хода точки подвеса штанг 1-6 м, максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрический, реже газовые двигатели (на нефтяном газе от скважины) мощностью до 100 кВт.
Станок-качалка преобразует вращение вала двигателя в возвратнопоступательное движение, передаваемое колонне штанг через гибкую (канатную, цепную) подвеску и полированный шток. Применяются в основном механические редукторно-кривошипные, балансирные и безбалансирные, а также башенные и гидравлические станки-качалки. Максимальная длина хода точки подвеса штанг 1-6 м (башенные до 12 м), максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрический, реже газовые двигатели мощностью до 100 кВт.
Станция управления штанговой насосной установкой обеспечивает пуск, установку, защиту от перегрузок, а также периодическую работу. Дополнительное оборудование штанговой насосной установки: якорь для предотвращения перемещений нижнего конца насосно-компрессорных труб; хвостовик — колонна насосно-компрессорных труб малого диаметра (25-40 мм) ниже насоса для выноса воды; газовые и песочные якори для защиты насоса от попадания свободного газа и абразивных механических примесей; штанговые протекторы (полимерные или с катками) для уменьшения износа труб и штанговых муфт в наклонных скважинах; скребки на штангах для удаления парафиновых отложений с насосно-компрессорных труб; динамограф, показывающий зависимость нагрузки от перемещения точки подвеса штанг, для технической диагностики узлов штанговой насосной установки.
Продукция скважины (нефть, вода, рассол) подаётся на поверхность по насосно-компрессорным трубам, обсадной колонне либо по полым штангам. Производительность при постоянной откачке до 300 м3/сутки, при меньших дебитах применяется периодическая добыча нефти.
СХЕМА ЭЛЕКТРОЦЕНТРОБЕЖНОЙ НАСОСНОЙ УСТАНОВКИ
Электроцентробежная насосная установка — комплекс оборудования для механизированной добычи жидкости через скважины с помощью центробежного насоса, непосредственно соединённого с погружным электродвигателем. Используют при добыче нефти и воды, в том числе рассолов. Электроцентробежная насосная установка для нефтяных скважин (рис. 5) включает центробежный насос с 50-600 ступенями; асинхронный электродвигатель, заполненный специальным диэлектрическим маслом; протектор, предохраняющий полость электродвигателя от попадания пластовой среды; кабельную линию, соединяющую электродвигатель с трансформатором и станцией управления. Ступень центробежного насоса содержит направляющий аппарат с рабочим колесом (рис. 5).

Рис. 4. Электроцентробежная насосная установка:
1 - электродвигатель; 2 - протектор; 3 - центробежный насос; 4 - кабель; 5 - устьевая арматура; 6 - трансформатор; 7 - станция управления; 8 - датчик.
Направляющие аппараты стянуты в цилиндрическом корпусе насоса, а рабочие колёса зафиксированы шпонкой на валу, подвешенном на осевой опоре и вращающемся в концевых и промежуточных радиальных опорах. Детали отливаются из специального чугуна, бронзы, коррозионно- и абразивостойких сплавов и полимерных материалов. Для уменьшения попадания в насос свободного газа перед ним устанавливается гравитационный или центробежный газосепаратор.

Рис. 5. Ступень электроцентробежного насоса:
1 - направляющий аппарат; 2 - рабочее колесо.
Электродвигатель состоит из статора, содержащего цилиндрический корпус, с запрессованными пакетами электротехни-ческой стали, в пазах которых размещена обмотка, и подвешенного на осевой опоре ротора с закреплёнными на валу стальными пакетами, где размещена короткозамкнутая обмотка типа "беличье колесо"; между пакетами расположены радиальные опоры.
Протектор содержит уплотнение вала систему компенсации температурного расширения масла, в некоторых случаях гидравличес-кий затвор с жидкостью большей плотности, чем скважинная среда и нейтральной по отношению к ней и маслу электродвигателя.
Трехжильный бронированный плоский или круглый кабель большого сечения имеет герметичный ввод в электродвигатель и соединяет последний через трансформатор со станцией управления. Станция осуществляет управление, контроль и электрический защиту электроцентробежной насосной установки от короткого замыкания, перегрузки, срыва подачи напряжения, снижения сопротивления изоляции. Трансформатор преобразует напряжение сети в рабочее, имеет ступенчатую регулировку для подбора режима работы. Применяются также преобразователи частоты для бесступенчатой регулировки частоты вращения электроцентробежной насосной установки и датчики давления и температуры электродвигателя, передающие сигнал об отклонении этих параметров от безопасных значений по силовому кабелю или сигнальной жиле.
Длина электроцентробежной насосной установки 25-30 м. При длине центробежного насоса и электродвигателя свыше 5-8 м (в зависимости от диаметра) они состоят из отдельных секций для удобства транспортировки и монтажа. Электроцентробежная насосная установка монтируется в вертикальном положении непосредственно в процессе спуска в скважину. Корпуса секций соединяют фланцами, валы — шлицевыми муфтами. Установка опускается на заданную глубину на насосно-компрессорных трубах, подвешенных к устьевой арматуре с герметическим вводом кабельной линии в скважину. Кабельная линия крепится к насосно-компрессорным трубам снаружи поясами. При работе электроцентробежной насосной установки продукция подаётся на поверхность по насосно-компрессорным трубам. Реже применяют электроцентробежные насосные установки без насосно-компрессорных труб с пакером, подвеской на кабель-канате и подачей продукции по обсадной колонне. Производительность электроцентробежной насосной установки для нефтяной скважин от 15-20 до 1400-2000 м3/сутки, напор до 2500-3000 м, мощность электродвигателя до 500 кВт, напряжение до 2000 В, температура откачиваемой среды до 180°С, давление до 25 МПа.
Электроцентробежная насосная установка для воды содержит заполненный водой электродвигатель и насос с 5-50 ступенями. Производительность его до 3000 м3/сутки, напор до 1500 м, мощность электродвигателя до 700 кВт, напряжение 3000 В, температура воды до 40°С.

Заключение
В ходе учебной практики на учебном полигоне ЦПК ОАО «Татнефть» мы изучили:
- способы бурения скважин и технологию их проводки;
- действующий парк буровых установок с их технической характеристикой;
- состав наземного оборудования буровых установок и компоновку бурильного инструмента;
- способы монтажа и транспортировки буровых установок;
- организацию ремонта бурового оборудования;
- установки для капитального ремонта скважин;
- станки-качалки и способы добычи нефти
Таким образом, учебная практика дала нам представление о нефтяной промышлености в целом и о ее составных частях, таких как: бурение нефтяных скважин, капитальный ремонт нефтяных скважин, а также эксплуатация нефтяных скважин.

Список использованной литературы
1. А.Г.Сергеев. Метрология.- М.: Логос, 2005.
2. Г.С.Абрамов, А.В.Барычев. Практическая расходометрия в нефтяной
промышленности.- М.: ОАО «ВНИИОЭНГ», 2002.
3. В.П.Тронов. Промысловая подготовка нефти.- Казань.: Издательство «Фэн», 2000.
4 С.Г. Лутошкин. Сбор и подготовка нефти, газа и воды. Учебник для ВУЗов.- М.: Альянс, 2005.

Ключевые слова -


ФНГ ФИМ ФЭА ФЭУ Яндекс.Метрика
Copyright 2021. Для правильного отображения сайта рекомендуем обновить Ваш браузер до последней версии!