ФНГ / РЭНГМ / Акустическая эмиссия.
(автор - student, добавлено - 13-08-2013, 17:54)
Акустическая эмиссия. При разрушении почти все материалы издают звук, т. е. испускают акустические волны, воспринимаемые на слух. Большинство конструкционных материалов (например, многие металлы и композиционные материалы) начинают при нагружении испускать акустические колебания в ультразвуковой (неслышимой) части спектра еще задолго до разрушения. Изучение и регистрация этих волн стала возможной с созданием специальной аппаратуры. Под акустической эмиссией (эмиссия - испускание, генерация) понимается возникновение в среде упругих волн, вызванных изменением ее состояния под действием внешних или внутренних факторов. Акустико-эмиссионный метод основан на анализе этих волн и является одним из пассивных методов акустического контроля. Механизмом возбуждения акустической эмиссии (АЭ) является совокупность физических и (или) химических процессов, происходящих в объекте контроля. В зависимости от типа процесса АЭ разделяют на следующие виды: - АЭ материала, вызываемая динамической локальной перестройкой его структуры; - АЭ трения, вызываемая трением поверхностей твердых тел в местах приложения нагрузки и в соединениях, где имеет место податливость сопрягаемых элементов; - АЭ утечки, вызванная результатом взаимодействия протекающей через течь жидкости или газа со стенками течи и окружающим воздухом; - АЭ при химических или электрических реакциях, возникающих в результате протекания соответствующих реакций, в том числе сопровождающих коррозийные процессы; - магнитная и радиационная АЭ, возникающая соответственно при перемагничивании материалов (магнитный шум) или в результате взаимодействия с ним ионизирующего излучения; - АЭ, вызываемая фазовыми превращениями в веществах и материалах. Таким образом, АЭ - явление, сопровождающее едва ли не все физические процессы, протекающие в твердых телах и на их поверхности. Возможности регистрации ряда видов АЭ вследствие их малости, особенно АЭ, возникающих на молекулярном уровне, при движении дефектов (дислокаций) кристаллической решетки, ограничивается чувствительностью аппаратуры, поэтому в практике АЭ контроля большинства промышленных объектов, в том числе объектов нефтегазовой промышленности, используют первые три вида АЭ. При этом необходимо иметь в виду, что АЭ трения создает шум, приводит к образованию ложных дефектов и является одним из основных факторов, усложняющих применение АЭ метода. Кроме того, из АЭ первого вида регистрируются только наиболее сильные сигналы от развивающихся дефектов: при росте трещин и при пластическом деформировании материала. Последнее обстоятельство придает АЭ методу большую практическую значимость и обусловливает его широкое применение для целей технической диагностики. Целью АЭ контроля является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки объекта контроля, сварного соединения и изготовляемых частей и компонентов. Все индикации, вызванные источниками АЭ, должны быть при наличии технической возможности оценены другими методами неразрушающего контроля. Виды сигналов АЭ Регистрируемую промышленной серийной аппаратурой АЭ разделяют на непрерывную и дискретную. Непрерывная АЭ регистрируется как непрерывное волновое поле с большой частотой следования сигналов, а дискретная состоит из раздельных различимых импульсов с амплитудой, превышающей уровень шума. Непрерывная соответствует пластическому деформированию (течению) металла или истечению жидкости или газа через течи, дискретная - скачкообразному росту трещин. Размер источника излучения дискретной АЭ невелик и сопоставим с длиной излучаемых волн. Его можно представить в виде квазиточечного источника, расположенного на поверхности или внутри материала и излучающего сферические волны или волны других типов. При взаимодействии волн с поверхностью (границей раздела двух сред) происходит их отражение и трансформация. Волны, распространяющиеся внутри объемов материала, быстро слабнут из-за затухания. Поверхностные волны затухают с расстоянием, значительно меньше объемных, поэтому они преимущественно и регистрируются приемниками АЭ. Регистрация сигнала от источника АЭ осуществляется одновременно с шумом постоянного или переменного уровня. Шумы являются одним из основных факторов, снижающих эффективность АЭ контроля. Ввиду разнообразия причин, вызывающих их появление, шумы классифицируются в зависимости от: - механизма генерации (источника происхождения) - акустические (механические) и электромагнитные; - вида сигнала шумов - импульсные и непрерывные; - расположения источника - внешние и внутренние. Основными источниками шумов при АЭ контроле объектов являются: - разбрызгивание жидкости в емкости, сосуде или трубопроводе при его наполнении; - гидродинамические турбулентные явления при высокой скорости нагружения; - трение в точках контакта объекта с опорами или подвеской, а также в соединениях, обладающих податливостью; - работа насосов, моторов и других механических устройств; - действие электромагнитных наводок; - воздействие окружающей среды (дождя, ветра и пр.); - собственные тепловые шумы преобразователя АЭ и шум входных каскадов усилителя (предусилителя). Для подавления шумов и выделения полезного сигнала обычно применяют два метода: амплитудный и частотный. Амплитудный заключается в установлении фиксированного или плавающего уровня дискриминационного порога , ниже которого сигналы АЭ аппаратура не регистрирует. Фиксированный порог устанавливается при наличии шумов постоянного уровня, плавающий - переменного. Плавающий порог , устанавливаемый автоматически за счет отслеживания общего уровня шумов, позволяет, в отличие от фиксированного, исключить регистрацию части сигналов шума как сигнала АЭ. Общая схема регистрируемого сигнала АЭ на фоне шумов:
1 - осцилляции;
2 - плавающий порог;
3 - осцилляции без учета плавающего порога;
4 - шум.
Общий вид сигнала АЭ на выходе усилительного тракта аппаратуры:
1 - осцилляции;
2 - огибающая;
- пороговое значение амплитуды;
- амплитуда k-ого импульса.
Частотный метод подавления шумов заключается в фильтрации сигнала, принимаемого приемниками АЭ, с помощью низко- и высокочастотных фильтров (ФНЧ/ФВЧ). В этом случае для настройки фильтров перед проведением контроля предварительно оценивают частоту и уровень соответствующих шумов. После прохождения сигнала через фильтры и усилительный тракт, наряду с трансформацией волн на поверхности контролируемого изделия, происходит дальнейшее искажение первоначальных импульсов источника АЭ. Они приобретают двухполярный осциллирующий характер. Дальнейший порядок обработки сигналов и использования их в качестве информативного параметра определяется компьютерными программами сбора данных и их постобработки, использованными в соответствующей аппаратуре различных производителей. Правильность определения числа событий и их амплитуда будут зависеть не только от возможности их регистрации (разрешающей способности аппаратуры), но и от способа регистрации. Например, если регистрировать импульсы огибающей сигналов выше уровня то будет зафиксировано четыре импульса, а если регистрировать количество осцилляции выше этого же уровня, то будет зафиксировано девять импульсов. Под импульсом понимается цуг волн с частотой в рабочем диапазоне, огибающая которого в начале импульса пересекает порог вверх, а в конце импульса - вниз. Таким образом, число зарегистрированных импульсов будет зависеть от настройки аппаратуры: величины тайм-аута конца события. Если тайм-аут будет достаточно велик, то может быть зарегистрировано, например, четыре импульса, если мал, то все осцилляции выше уровня могут быть зарегистрированы в качестве импульсов. Большие погрешности может внести также использование частотной полосы пропускания сигналов и уровня дискриминации, особенно когда сигналы АЭ по амплитуде, сопоставимы с уровнем шумов.
Похожие статьи:
|
|