О САЙТЕ
Добро пожаловать!

Теперь вы можете поделиться своей работой!

Просто нажмите на значок
O2 Design Template

ФЭА / Электроэнергетика / Шпаргалка по электротехнике

(автор - student, добавлено - 25-11-2012, 00:12)
СКАЧАТЬ ПОЛНУЮ ВЕРСИЮ: shpora.zip [304,09 Kb] (cкачиваний: 105)



Электрическая цепь и её элементы
Электрической цепью называют совокупность электротехнических устройств, образующих путь для прохождения электрического тока и предназначенных для передачи, распределения и взаимного преобразования электрической и других видов энергии.
Электромагнитные процессы, протекающие в устройствах электрической цепи, могут быть описаны при помощи понятий об электродвижущей силе (Э.Д.С.), токе и напряжении.
Электрические цепи, в которых получение электрической энергии, её передача и преобразование происходят при неизменных во времени токах и напряжениях, называют цепями постоянного тока. В таких цепях электрические и магнитные поля также не изменяются во времени. Так как токи и напряжения постоянны, то изменения этих величин во времени равны нулю:
; .
Поэтому и напряжение на индуктивности UL, и ток через ёмкость, зависящие от изменения этих величин, также равны нулю:
;
Из этого следует, что в индуктивности сопротивление постоянному току равно нулю, а ёмкость, наоборот, представляет собой бесконечно большое сопротивление. Поэтому в цепи постоянного тока катушка индуктивности представляет собой закоротку (обычный провод, сопротивлением которого можно пренебречь), а ёмкость (конденсатор) – представляет собой разрыв цепи.
Основными элементами электрической цепи являются источники и приёмники электрической энергии, которые соединяются между собой проводами.
В источниках электрической энергии (электромагнитные генераторы, гальванические элементы, термопреобразователи и др.) происходит преобразование механической, химической, тепловой и других видов энергии в электрическую.
В приёмниках электрической энергии (электродвигатели, электротермические устройства, лампы накаливания, резисторы, электролизные ванны и др.), наоборот, электрическая энергия преобразуется в тепловую, световую, механическую, химическую и др.

Схема электрической цепи
Графическое изображение реальной электрической цепи с помощью условных символов и знаков называется электрической схемой.
Такая схема представляет собой идеализированную цепь, которая служит расчетной моделью реальной цепи и иногда называется эквивалентной схемой замещения. Эта схема по возможности должна отражать реальные процессы, происходящие в действительности.
При проведении расчетов каждый реальный элемент цепи заменяется элементами схемы.
В цепях постоянного тока чаще всего используют два основных элемента: источник энергии с Э.Д.С. Е c внутренним сопротивлением r0 и резистивный элемент (нагрузка) с сопротивлением R. Под внутренним сопротивлением генератора r0 понимают сопротивление электрическому току всех элементов внутри генератора.
Сопротивление приёмника R характеризует потребление электрической энергии, то есть превращение электрической энергии в другие виды с выделением мощности:

Для проведения анализа электрической цепи важно выделить такие понятия, как ветвь, узел и контур.
Ветвь – участок электрической цепи, образованный последовательно соединёнными элементами и характеризующийся собственным значением тока в данный момент времени.
Узел – это точка соединения трёх и более ветвей (если на электрической схеме в месте пересечения двух линий стоит точка, то в этом месте есть электрическое соединение 2х линий, в противном случае его нет).
Контур – замкнутая часть цепи, состоящая из нескольких ветвей и узлов. Различают такие понятия, как геометрический и потенциальный узел.
На рис. 1.2 приведена схема электрической цепи, содержащей 4 геометрических узла, 3 потенциальных узла и 5 ветвей.
Заземление любой точки схемы означает, что потенциал этой точки принят равным нулю. Токораспределение в такой схеме не изменяется, так как никаких новых ветвей, по которым могли бы протекать токи не образуется. Если же заземлить 2 точки схемы и более, то в этом случае в схеме токораспределение изменится.


Активные элементы
В линейных электрических цепях в качестве источников энергии различают источники Э.Д.С. и источники тока.
Идеальный источник Э.Д.С. имеет неизменное Э.Д.С. и напряжение на выходных зажимах при всех токах нагрузки. У реального источника – Э.Д.С. и напряжение на зажимах изменяются при изменении нагрузки (например, вследствие падения напряжения в обмотках генератора). В электрической схеме это учитывается последовательным включением резистора r0. Идеальный источник напряжения изображен на рис. 1.3.
Напряжение Uab зависит от тока приёмника и равно разности между Э.Д.С. генератора и падением напряжения на его внутреннем сопротивлении r0:
. Ток, протекающий по цепи, также зависит от сопротивления нагрузки:
. Если принять Э.Д.С. источника его внутреннее сопротивление и сопротивление приёмника не зависящими от тока и напряжения, то внешняя характеристика источника энергии U12 = f(I) и ВАХ приёмника Uab = f(I) будут линейными (рис. 1.4).
По рис. 1.4 видно, что по мере нарастания тока в цепи напряжение на нагрузке возрастает, а, следовательно, уменьшается напряжение на выходных зажимах источника.
Источник тока характеризуется бесконечным внутренним сопротивлением и бесконечным значением Э.Д.С., при этом выполняется равенство:
Если r0>>RH и I0<<I, то есть источник энергии находится в режиме, близком к короткому замыканию, то можно принять ток I0=0.
Такой источник с внутренним сопротивлением r0 = ∞ (g0=0) называют идеальным источником тока

Пассивные элементы
Основными пассивными элементами электрической цепи являются резистивные, индуктивные и емкостные. Рассмотрим их силовые характеристики при постоянном токе.
Электротехническое устройство, обладающее сопротивлением и применяемое для ограничения тока, называется резистором. (рис. 1.9).
Идеализированные модели резисторов называются резистивными элементами (при идеализации пренебрегают токами через изолирующие покрытия резисторов, каркасы проволочных резисторов и т. п.).
Основной величиной, характеризующей резистор, является его сопротивление R, которое определяется из соотношения:
называемого законом Ома. Сопротивление измеряется в Омах: [R] = [U\I] = В\А = Ом. К пассивным элементам относят также и индуктивный элемент - катушку индуктивностью L (Рис. 1.11).
Катушкой называется обмотка изолированного провода, намотанного на каркас или без каркаса, имеющая выводы для присоединения.
L – параметр, который определяет способность катушки создавать магнитное поле. Он зависит от геометрических параметров катушки, числа её витков и от магнитных свойств сердечника, на который намотана катушка.
Из-за появления магнитного поля цепь будет пронизываться магнитным потоком. Для характеристики катушки индуктивности, как элемента электрической цепи достаточно вычислить потокосцеплениеψ. Индуктивность Lявляетсякоэффициентом пропорциональности между ψ и I:
Между двумя любыми проводниками, разделёнными диэлектриком, существует электрическая ёмкость. Коэффициент пропорциональности С называют ёмкостью
;
Основные законы и уравнения электрических цепей
Основными физическими законами, позволяющими описать любые режимы электрической цепи, являются законы Ома.
1. Закон Ома для участка цепи, не содержащего Э.Д.С., устанавливает связь между током и напряжением на этом участке (рис. 1.13)
2. Закон Ома для участка цепи, содержащего источник Э.Д.С.
Обобщённый закон Ома позволяет найти ток этого участка по известной разности потенциалов на концах участка цепи и имеющейся на этом участке Э.Д.С. E.
Имея в виду, что в неразветвлённом участке электрической схемы с произвольным числом Э.Д.С., сопротивлений и заданной разностью потенциалов на его концах, ток направлен от высшего потенциала к низшему.
Если предположить, что , то ток и напряжение будут направлены от точки а к точке с. (рис. 1.14).

Если предположить, что , то ток и напряжение будут направлены от точки с к точке а, напряжение и ток определим по формуле
; ;

Основными уравнениями теории электрических цепей являются уравнения Кирхгофа, поэтому все электрические цепи подчиняются первому и второму законам Кирхгофа.

Второй закон Кирхгофа
Алгебраическая сумма напряжений (не падений напряжений) вдоль любого контура равна нулю
,


Алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме Э.Д.С. вдоль того же контура:

При составлении уравнений слагаемые берут со знаком плюс, если действующие на участках напряжения и Э.Д.С. совпадают с направлением обхода, и со знаком минус, если их действия противоположны направлению обхода.
При составлении уравнений для расчёта токов в схемах с помощью законов Кирхгофа необходимо придерживаться следующего алгоритма:
1) Произвольно задаются положительные направления токов.
2) Произвольно задаются положительные направления обхода контуров (с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми, например, по часовой стрелке).
3) Составляют уравнения по первому закону Кирхгофа. Число таких уравнений должно быть на единицу меньше числа узлов.
4) Недостающие уравнения составляют по второму закону Кирхгофа, при этом учитывают, чтобы в каждый новый контур входила, хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых записаны уравнения.
5)Решая полученную систему уравнений, находим неизвестные токи. Если какой - то ток или несколько токов, оказались отрицательными, то это значит, что действительное направление этих токов противоположно выбранному.









Первый закон Кирхгофа
Алгебраическая сумма токов, подтекающих к любому узлу схемы, равна нулю:

(Подтекающие к узлу токи считаются положительными, а утекающие – отрицательными).
Сумма подтекающих к любому узлу токов равна сумме утекающих от узла токов:

Метод контурных токов
Расчет методом контурных токов, так как он позволяет сократить число уравнений. При расчёте этим методом полагают, что в каждом независимом контуре схемы течёт свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.
Если в схеме три контура, то систему уравнений для решения методом контурных токов записывают следующим образом:

В данной системе , , - суммы сопротивлений первого, второго и третьего контуров соответственно:

Сопротивления смежных ветвей , , , , , берут со знаком минус, так как направление контурных токов во всех ветвях встречное (если они по направлению совпадают, то смежное сопротивление берётся со знаком плюс).


- контурные Э.Д.С. первого, второго и третьего контуров. В них со знаком плюс входят Э.Д.С., направления которых совпадают с направлением обхода контура, минус – Э.Д.С., направленная против направления обхода.


Подставив все получившиеся значения в систему, вычисляем её главный определитель ∆, а также определители ∆1,∆2,∆3, полученные при подстановке на место 1-го, 2-го и 3-го столбцов соответственно значений столбца контурных Э.Д.С.
Находим значения контурных токов:

А также токи в ветвях, равные алгебраической сумме контурных токов:
, ,
, ,
Для того, чтобы проверить правильность расчетов составляют баланс мощностей по формуле:

Если направление тока I, протекающего через Э.Д.С. E, совпадает с направлением Э.Д.С., то произведение EI входит в уравнение с положительным знаком, так как источник Э.Д.С. доставляет в цепь энергию.












Принцип наложения и метод наложения
Ещё один метод расчета линейных электрических цепей называется методом наложения. В его основе лежит принцип наложения, который можно сформулировать следующим образом: ток в любой ветви равен алгебраической сумме токов, вызываемых каждой из Э.Д.С. схемы в отдельности.
На исходной схеме (рис 2.2а) произвольно выбираем направления токов. Рассчитываем цепь от действия Э.Д.С. Е1, для чего мысленно закорачиваем (убираем) все остальные Э.Д.С., в нашем случае Э.Д.С. Е2 (рис 2.2б).


Рассчитываем цепь от действия Э.Д.С. Е2, для чего мысленно закорачиваем Э.Д.С. Е1 (рис 2.2в)


Действительные токи находим как алгебраическую сумму найденных частичных токов. Значения токов и берём со знаком минус, если они направлены в другую сторону, нежели ток на исходной схеме.



Входные и взаимные проводимости ветвей
На рис. 2.3а изображена скелетная схема пассивной цепи. В каждой её ветви есть сопротивление. Выделим две схемы ветви m и k. Поместим в ветвь m Э.Д.С. (рис 2.3б). Выберем контуры в схеме так, чтобы k- ветвь входила только в k- контур, а m- ветвь, только в m-контур. Э.Д.С. Em вызовет точки в ветвях m и k.



Коэффициенты q имеют размерность проводимости. Коэффициент qmm называют входной проводимостью ветви m, qkm – взаимной проводимостью.
Для расчёта проводимостей составляют уравнения по методу контурных токов, следя за тем, чтобы ветви, взаимные и входные проводимости которых представляют интерес, входили каждая только в свой контур. Далее находят определитель системы ∆ и по нему необходимые алгебраические дополнения.



















Теорема взаимности
Теорема взаимности формируется таким образом: для любой линейной цепи с одним источником Э.Д.С. ток Ik в ветвях, вызванный Э.Д.С. Em, находящийся в m-ветви, будет равен току Im в m-ветви, вызванному Э.Д.С. Ek (численно равной Em) находящейся в k ветви.
Другими словами, сущность принципа взаимности состоит в следующем. Пусть имеется электрическая схема произвольной конфигурации с единственным источником Э.Д.С. Em, который действует в m-ветви в направлении от точки а к точке в (рис 2.4а) и создаёт в k-ветви с сопротивлением Rk ток Ik, направленный от точки с к точке d. Такой же источник Э.Д.С. Ek = Em, включенный в k-ветвь и действующий от точки c к точке d (рис 2.4б) создаёт в m-ветви с сопротивлением Rm = Rk ток Im, направленный от точки а к точке b и равный току Ik.
На рис. 2.4 пассивным четырёхполюсником (прямоугольником с буквой П) обозначена вся остальная часть схемы, не содержащая источников Э.Д.С. и источников тока.
Токи в ветвях m и k.


Можно отметить, что теорема взаимности справедлива не только для токов, но и для напряжений.

Метод узловых потенциалов
В тех случаях, когда в анализируемой схеме число узлов без единицы меньше числа независимых контуров, метод узловых потенциалов является более экономичным по сравнению с методом контурных токов.
Суть этого метода состоит в определении напряжений между узлами сложной электрической цепи путём решения системы уравнений, составленных на основе первого закона Кирхгофа. После нахождения неизвестных потенциалов, используя закон Ома, определяют токи во всех ветвях, и выясняют их истинное направление.
Потенциал любой одной точки схемы можно принять равным нулю, так как ток в ветви зависит не от абсолютных значений потенциалов узлов, а от разности потенциалов на концах ветви.
При этом число неизвестных уменьшается с n до n -1.
Рассмотрим применение данного метода для расчета цепи, приведённой на рис. 2.9, которая имеет большое число ветвей (7) и сравнительно небольшое число узлов (4).
Если узел 0 мысленно заземлить, то есть принять его потенциал равным 0, то неизвестными будут потенциалы только трёх узлов: .
Первоначально в исходной схеме произвольно задаём направления токов, которые обозначаются с двумя индексами: первый индекс определяет номер узла, от которого течет ток, а второй - номер узла, к которому ток подтекает.

- сумма проводимостей ветвей, сходящихся в узле 1;
- проводимость ветви, находящейся между узлами
1 и 2, принято всегда брать со знаком «-».
- узловой ток первого узла, равный алгебраической сумме токов, сходящихся в узле. В образовании узлового тока n-й ветви участвуют лишь те ветви, подходящие к этому узлу, которые содержат источники Э.Д.С. и источники тока. Если Э.Д.С. и ток источника тока направлены к узлу, то ставится знак «+», в противном случае «-». После решения системы уравнений определяют токи в ветвях по закону Ома,
Метод эквивалентного генератора
При расчёте сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объём этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно производить несколько раз, задаваясь различными значениями сопротивления.
В любой электрической схеме можно мысленно выделить какую-то одну ветвь, а всю остальную часть схемы, независимо от структуры и сложности, условно изобразить прямоугольником, который представляет собой так называемый двухполюсник.
Таким образом, двухполюсник - это обобщённое название схемы, которая двумя выходными зажимами (полюсами) присоединена к выделенной ветви. Если в двухполюснике есть источник Э.Д.С. или тока, то такой двухполюсник называют активным. Если в двухполюснике нет источника Э.Д.С. или тока, то его называют пассивным.
При решении задачи методом эквивалентного генератора (активного двухполюсника) необходимо:
1) Мысленно заключить всю схему, содержащую Э.Д.С. и сопротивления, в прямоугольник, выделив из нее ветвь аb, в которой требуется найти ток (рис 2.13).
2) Найти напряжение на зажимах разомкнутой ветви ab (в режиме холостого хода).
Напряжение холостого хода Uо (эквивалентное Э.Д.С. Еэ) для рассматриваемой цепи можно найти так:

Сопротивление R4 в расчёт не вошло, так как при разомкнутой ветви ab ток по нему не протекает.
3)айти эквивалентное сопротивление. При этом источники Э.Д.С. закорачиваются, а ветви, содержащие источники тока, размыкаются. Двухполюсник становится пассивным.
Для данной схемы

4) числить значение тока. Для данной схемы имеем:

Преобразования в линейных электрических цепях
Соединение резисторов.
Существует два вида соединения резисторов: последовательное и параллельное (рис. 2.17).

При последовательном соединении резисторов (рис. 2.17а) через все резисторы протекает один и тот же ток I, то есть:

Напряжение же U равно сумме падений напряжений на сопротивлениях:
Общее сопротивление R рассчитывается

При параллельном соединении резисторов(.17б)
а ток I равен сумме всех токов на нагрузках (резисторах):
Общее сопротивление R участка цепи рассчитывается по формуле:
Можно сделать вывод, что при последовательном соединении резисторов сопротивление на участке цепи возрастает, а при параллельном - уменьшается.
Соединение конденсаторов.
На рис. 2.18 изображены два способа соединения конденсаторов - последовательное и параллельное.
При последовательном соединении конденсаторов (рис. 2.18а)


В отличие от резисторов общая ёмкость конденсаторов рассчитывается по формуле:

При параллельном соединении конденсаторов (рис. 2.18б).

Общая ёмкость рассчитывается следующим образом
Отсюда можно сделать вывод, что если конденсатор последовательно соединить с другим конденсатором, то их общая ёмкость уменьшится, если параллельно - увеличится.

Замена треугольника сопротивлений эквивалентной звездой и наоборот.
Несмотря на то, что эта схема имеет один источник питания, она не поддаётся расчету методом эквивалентных сопротивлений, так как в ней нет сопротивлений, включенных между собой последовательно или параллельно.
Особенностью этой схемы является наличие замкнутых контуров из трёх сопротивлений (Rab, Rbc, Rac и Rbd, Rcd, Rbc) причём точки, разделяющие каждую пару смежных сопротивлений, являются узловыми. Такие контуры называются треугольниками сопротивлений.
Воспользуемся способом расчета, который состоит в замене треугольника сопротивлений эквивалентной трёхлучевой звездой сопротивлений (Ra, Rb, Rc ) как показано на рис. 2.19 пунктиром.
Замена треугольника сопротивлений эквивалентной звездой, и наоборот, осуществляется при условии, что такая замена не изменяет потенциалов узловых точек a, b, c, являющихся вершинами треугольника и эквивалентной звезды.
Одновременно предполагается, что в остальной части схемы, незатронутой преобразованием, режим работы не изменяется (не изменяются токи, напряжения, мощности).
Без доказательства приведём формулы, которые служат для определения сопротивлений трёхлучевой звезды по известным сопротивлениям эквивалентного треугольника.



Обратное преобразование трёхлучевой звезды в эквивалентный треугольник, осуществляется

















Синусоидальный ток и его основные характеристики
В настоящее время переменный ток находит широкое применение в технике, так как он легко трансформируется и передается на большие расстояния при высоком напряжении и малых потерях.
В электротехнике наибольшее распространение получил синусоидальный переменный ток, то есть ток, величина которого изменяется по закону синуса.
Поэтому мгновенное значение синусоидального тока выражается формулой

где - амплитуда тока,
Т - период – время, за которое совершается одно полное колебание, с;
f = 1/T - частота, равная числу колебаний за 1 секунду (единица измерения частоты – Герц (Гц) или с-1 );
ω – угловая частота (выражается в рад/с или с-1 ).

Аргумент синуса, то есть называют фазой. Фаза характеризует состояние колебания (его численное значение) в данный момент времени t.
Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.
Если частота слишком низкая, то увеличиваются габариты электрических машин и, следовательно, расход материалов на их изготовление.
При слишком больших частотах увеличиваются потери энергии в сердечниках электрических машин и трансформаторах.
Среднее и действующее значения синусоидально изменяющейся величины
Под средним значением синусоидально изменяющейся величины понимают её среднее значение за полпериода.
То есть среднее значение синусоидального тока составляет от амплитудного значения.
Переменный ток обычно характеризуется его действующим значением .
Значит, действующее значение синусоидального тока равно 0,707 от амплитудного.

Получение синусоидальной Э.Д.С.
В линейных электрических цепях синусоидальный ток возникает под действием синусоидальной Э.Д.С. Синусоидальную зависимость можно получить, вращая с постоянной скоростью в равномерном магнитном поле проводник в виде прямоугольной рамки площадью S. Тогда магнитный поток через рамку

где - угол между нормалью к рамке и вектором магнитной индукции .
Поскольку при равномерном вращении рамки угловая скорость , то угол будет изменяться по закону =>
Так как при вращении рамки пересекающий её магнитный поток всё время меняется, то по закону электромагнитной индукции в ней будет наводиться Э.Д.С. индукции

где Е0 – амплитуда синусоидальной Э.Д.С.
Таким образом, в рамке возникает синусоидальная Э.Д.С., а если рамку замкнуть на нагрузку, то в цепи потечёт синусоидальный ток.














Способы изображения синусоидальных величин
Графическое изображение синусоидальных величин.
Для сравнения электрических величин, изменяющихся по синусоидальному закону, необходимо знать разность их начальных фаз. Если, например, на каком - либо участке ток i и напряжение u имеют одинаковые начальные фазы, говорят, что они совпадают по фазе. Если график изменения во времени напряжения u на каком-либо участке цепи пересекает координату времени t раньше графика тока i, то говорят, что напряжение по времени опережает ток.
На рис. 3.2 для заданного элемента цепи представлены графики изменения во времени двух электрических величин: напряжения u и тока i. Из этих двух графиков видно, что они сдвинуты по фазе друг относительно друга на угол φ.

Векторное изображение синусоидальных величин.
При гармоническом изменении синусоидальной величины постоянной остаётся амплитуда. Этим можно воспользоваться для определения мгновенного значения электрической величины, не рассматривая графика её зависимости от времени. Синусоидальную функцию времени можно изобразить вектором, равным амплитуде данной функции, равномерно вращающимся с угловой скоростью ω. При этом начальное положение вектора определяется (для t=0) его начальной фазой .
При изображении синусоидальной Э.Д.С., напряжений и токов из начала координат проводят векторы, равные амплитудным значениям этих величин, под углом к горизонтальной оси. Положительные углы откладываются против часовой стрелки.
Если вращать вектор против часовой стрелки, то в любой момент времени он составит с горизонтальной осью угол, равный . Проекция вращающегося вектора на ось ординат (ось мгновенных значений) равна мгновенному значению синусоидальной величины.
Совокупность векторов на плоскости, изображающих Э.Д.С., напряжения, токи одной частоты, называют векторной диаграммой.
При исследовании установившихся режимов векторы неподвижны, их длина равна действующим значениям электрических величин.
С помощью векторов можно производить геометрическое суммирование электрических величин.
Так, на рис. 3.4 показаны векторы токов и , а также вектор их геометрической суммы . Углы обозначают начальные фазы токов.
Векторные диаграммы широко используются при анализе электрических цепей переменного тока.






























Представление синусоидальных величин комплексными числами
Синусоидально изменяющуюся электрическую величину можно представить комплексным числом и изобразить в виде вектора на комплексной плоскости с прямоугольной системой координат.
Комплексное число состоит из действительной (вещественной) и мнимой частей. По оси ординат откладывают мнимую часть комплексного числа, а ось обозначают +j; по оси абсцисс – действительную часть комплексного числа, а ось обозначают +1.
На комплексной плоскости синусоидальная величина может изображаться в виде модуля и аргумента или в виде двух составляющих вектора, направленных по действительной и мнимой осям.
Например, синусоидальный ток представляют вектором , модулем которого является значение амплитуды тока , а аргументом – начальная фаза , которую можно выражать в радианах или в градусах (рис. 3.5).
Составляющим вектора по действительной оси будет , а по мнимой - , то есть
Вектор называют комплексной амплитудой тока.
При построении векторных диаграмм точно фиксируют угол сдвига между векторами, а положение их относительно осей комплексной плоскости может быть произвольным, поэтому оси можно не изображать.
При анализе электрических цепей переменного тока приходится иметь дело с умножением и делением электрических величин. В этом случае удобно пользоваться комплексами этих величин, записанными в показательной форме:

где - оператор поворота единичного вектора относительно оси действительных величин
Умножение на j означает поворот вектора на +90 градусов (против часов стрелки).
Умножение на –j означает поворот вектора на угол –90 градусов (по часовой стрелке).
Законы Ома и Кирхгофа в комплексной форме.
Урав-ие представляет собой закон Ома для цепи синусоидального тока в комплексной форме
(3,9)
где Z – комплексное сопротивление, Ом.
В общем случае Z имеет некоторую действительную часть R и некоторую мнимую часть jX,

Уравнение 3.9 можно записать иначе. Разделим обе его части на и перейдём от комплексных амплитуд и к комплексам действующих значений и
По первому закону Кирхгофа, алгебраическая сумма мгновенных значений токов, сходящихся в любом узле схемы равна нулю:

Подставив вместо выражение и вынеся за скобку, получим . Таким образом,
- первый закон Кирхгофа в комплексной форме.
Для замкнутого контура сколь угодно сложной электрической цепи синусоидального тока можно составить уравнение по второму закону Кирхгофа и представить в комплексной форме:














Пассивные элементы R, L, C в цепи синусоидального тока
1) Резистивный элемент

В электрической цепи с резистивным элементом R ток изменяется по синусоидальному закону с начальной фазой ,то есть

Напряжение на зажимах резистора
где - амплитудное значение напряжения на зажимах резистора, - начальные фазы напряжения и тока. Кривые изменения напряжения и тока i (рис. 3.6б) в один и тот же момент времени t достигают максимального значения и одновременно проходят нулевые значения. Иначе говоря, обе кривые совпадают по фазе (рис. 3.6в).

Векторы и совпадают по направлению (угол φ=0). Переходя к действующим значениям можно записать

Сопротивление переменному току будет больше, чем постоянному за счет неравномерного распределения тока в проводе и потерь энергии в окружающую среду. Поэтому в отличие от сопротивления постоянному току сопротивление R в цепи переменного тока называется активным.

2) Индуктивный элемент
Изменение тока в цепи с индуктивностью L (рис. 3.7а) вызывает возникновение Э.Д.С. самоиндукции , которая по закону Ленца противодействует изменению тока. При увеличении тока Э.Д.С. действует навстречу току, а при уменьшении - в направлении тока, противодействуя его изменению. Показанные на рис. 3.7а положительные направления и имеют место только в течение некоторого узкого промежутка времени. Для тока, изменяющегося по гармоническому закону и при L= const Э.Д.С. самоиндукции

Чтобы в цепи протекал ток, требуется иметь на зажимах напряжение, уравновешивающее Э.Д.С. самоиндукции, равное ей по значению и противоположное по знаку.

где - амплитуда напряжения.
Произведение обозначается ,называется индуктивным сопротивлением и измеряется в Омах:

Из выражения 3.18 следует, что на участке цепи с индуктивностью L напряжение опережает ток на четверть периода. На рис. 3.7в вектор напряжения опережает вектор тока i на 900, а комплекс (вектор) Э.Д.С. самоиндукции находится в противофазе с комплексом напряжения
индуктивное сопротивление пропорционально Если R =0, то средняя активная мощность равна 0



3) Емкостной элемент
В цепи с конденсатором (рис. 3.9а), включенным на напряжение переменного тока, происходит непрерывное перемещение электрических зарядов.
Мгновенный ток в цепи равен скорости изменения заряда конденсатора:

где q – заряд конденсатора, Кл;
С – ёмкость конденсатора, Ф.
Если напряжение на зажимах конденсатора изменяется по синусоидальному закону:

то ток в цепи
где - амплитуда тока.
Величина, измеряемая в единицах сопротивления и обозначаемая , называется ёмкостным сопротивлением цепи:

Емкостное сопротивление обратно пропорционально частоте приложенного напряжения. Tок через конденсатор опережает по фазе напряжение на конденсаторе на 900.



Последовательное соединение элементов R, L, C в цепи синусоидального напряжения
В электрической цепи элементы R, L, C соединены последовательно и подключены к источнику синусоидального напряжения. Ток в такой цепи будет изменяться также по синусоидальному закону.

Все законы постоянного тока справедливы и для синусоидального, только записанные в комплексной форме.
Вектор напряжения на входе равен сумме векторов напряжений на элементах R, L, C:

По закону Ома можно расписать:

Значит полное сопротивление для цепи


где - реактивное сопротивление электрической цепи.
Можно рассмотреть три случая значений:
1) , значит ;
2) , значит ;
3) , значит .




1) Генератор постоянного тока бортовой сети самолета при токе 20 А имеет на зажимах напряжение 200 В, а при токе 60 А – 196 В. Определить внутреннее сопротивление и ЭДС источника электрической энергии.
Основной характеристикой, связывающей напряжение на генераторе и ток нагрузки, является вольтамперная характеристика, называемая внешней характеристикой. Она описывается уравнением U = E - R0I и представляет собой прямую линию









Мгновенная и средняя мощности. Активная, реактивная и полная мощности
Если имеются законы изменения тока и напряжения


то их произведение

Мгновенная мощность
График этой функции - результат графического умножения графиков тока и напряжения.
Под активной мощностью Р понимают среднее значение мгновенной мощности за период Т:
Активная мощность физически представляет собой энергию, которая выделяется в единицу времени в виде теплоты на участке цепи с сопротивлением R. Действительно, произведение . Следовательно:
[Вт]
Под реактивной мощностью Q принимают произведение напряжения на участке цепи на ток, протекающий по этому участку, и на синус угла φ между напряжением и током.
[ ВАр]
Величина, объединяющая активные реактивные мощности, называется полной мощностью.
[ ВА]
Для того, чтобы вычислить полную мощность нужно комплекс напряжения умножить на сопряженный комплекс тока:

Таким образом, активная мощность Р есть действительная часть (Re), а реактивная Q - мнимая часть (Im) произведения


Треугольники сопротивлений, напряжений и мощностей
Полное сопротивления Z

модуль комплексного сопротивления:
строим треуг-к Пифо

Знак угла φ в выражениях для мгновенного значения тока i определяется характером нагрузки: при индуктивном характере нагрузки (X>0) ток отстаёт от напряжения на угол φ и в выражении для мгновенного значения тока угол φ записывают со знаком минус, то есть ; при емкостном характере нагрузки (X<0) ток опережает напряжение на угол φ и выражение мгновенного значения тока записывают со знаком плюс, то есть .

2)
Тоже строим прямоугольный треугольник
Отношение Р к S, равное , называется коэффициентом мощности.

















Топографическая и векторная диаграммы
Каждая точка электрической схемы, в которой соединяются элементы схемы, имеет своё значение комплексного потенциала.
Совокупность точек комплексной плоскости, изображающих комплексные потенциалы одноимённых точек электрической схемы, называют топографической диаграммой.
Напряжение между любыми двумя точками электрической схемы, например между точками а и в, по значению и направлению определяются вектором, проведённым на векторной диаграмме от точки в к точке а.
Потенциал любой точки схемы может быть принят равным нулю. На диаграмме эту точку помещают в начало координат. Тогда положение остальных точек схемы на диаграмме определяется параметрами цепи, Э.Д.С. и токами ветвей.
Ток и напряжение на различных участках электрической цепи синусоидального тока, как правило, по фазе не совпадают. Наглядное представление о фазовом расположении различных векторов даёт векторная диаграмма токов и напряжений.
Основной функцией векторной диаграммы является качественный контроль аналитических расчетов, который заключается в сравнении этих векторов, исходя из физических соображений. Например, на векторной диаграмме напряжение должно опережать ток на 900, а напряжение отставать от тока на 900.
При несовпадении расчетов с этим положением можно сделать вывод, что в расчете допущена ошибка.

Резонанс напряжений
Условием возникновения резонанса напряжений в последовательном RLC - контуре является равенство реактивных сопротивлений катушки и конденсатора. При значения противоположных по фазе напряжений на индуктивности и на емкости равны, поэтому резонанс в рассматриваемой цепи называют резонансом напряжений.
Полное сопротивление последовательного контура при резонансе минимально и равно активному сопротивлению.

Из формулы закона Ома следует, что при ток в контуре максимален и, ввиду чисто активного сопротивления цепи, совпадает по фазе с приложенным напряжением:
Напряжение на индуктивности и на емкости равны и в Q раз превышают приложенное напряжение:

Величина Q называется добротностью контура и показывает во сколько раз напряжение на реактивном (индуктивном или емкостном) элементе превышает напряжение на входе схемы в резонансном режиме.
где ρ – волновое (характеристическое) сопротивление контура:

Угловая частота, при которой наступает резонанс, называется резонансной угловой частотой:

А частота, при которой возникает резонанс – соответственно резонансной частотой.














Резонанс токов
Рассмотрим цепь с двумя параллельными ветвями
Такую цепь часто называют параллельным контуром. Условием возникновения резонанса является равенство реактивных проводимостей:


При противоположные по фазе реактивные составляющие токов равны, поэтому резонанс в рассматриваемой цепи получил название резонанса токов.
При резонансе общий ток в параллельном контуре по фазе совпадает с приложенным напряжением.
Добротность контура показывает во сколько раз ток в ветви превышает питающий ток и определяется следующим соотношением:
,где ,
- эквивалентное активное сопротивление при резонансе:
- если
В общем случае резонансная частота определяется по формуле:
где - резонансная угловая частота при - аналогичная последовательному контуру.

Частотные характеристики пассивных двухполюсников
Входное сопротивление и входная проводимость двухполюсника являются функциями частоты ω. Под частотными характеристиками (ЧХ) понимают следующие типы характеристик:
1) Зависимость модуля входного сопротивления (проводимости) от частоты ω.
2) Зависимость действительной или мнимой части входного сопротивления (проводимости) от частоты ω.
ЧХ могут быть получены расчетным (если известна схема, характер элементов и их числовые значения), либо опытным путем (в этом случае схему двухполюсника и характер её элементов знать не обязательно).
При снятии ЧХ опытным путём на вход двухполюсника подают напряжение, частоту которого изменяют в широких пределах, начиная с нуля, и по результатам измерений подсчитывают модуль входного сопротивления (проводимости) или действительную (мнимую) часть входного сопротивления (проводимости).
В общем случае двухполюсники содержат резистивные и реактивные элементы. В частном случае двухполюсники могут состоять из реактивных элементов, тогда их называют реактивными двухполюсниками. Применительно к ним под ЧХ понимают зависимости или . ЧХ для несложных двухполюсников, содержащих резистивные и реактивные элементы, иногда можно качественно строить на основании простых физических изображений о характере изменения сопротивления отдельных элементов этого двухполюсника при изменении частоты. Если это сделать затруднительно, то прибегают к аналитическому расчету, либо к снятию ЧХ опытным путём.
Рассмотрим вопрос о построении ЧХ реактивных двухполюсников, не содержащих резистивных сопротивлений.
Входное сопротивление их , а входная проводимость
Частотная характеристика таких двухполюсников - это зависимость X(W) или b(W). Эти зависимости взаимно обратные.

Индуктивно связанные элементы. Э.Д.С. взаимной индукции
Если изменение тока в одном из элементов электрической цепи приводит к возникновению Э.Д.С. в другом элементе цепи, то говорят, что эти элементы индуктивно связаны друг с другом. Возникающая при этом Э.Д.С. называется Э.Д.С. взаимной индукции.
На рис. показаны две катушки с числом витков W(1) и W(2) магнитный поток первой катушки пропорционален протекающему по ней току . Часть этого потока пронизывает витки второй катушки и оказывает влияние на ток .
Аналогично магнитный поток второй катушки пронизывает витки первой.
Такие катушки называются индуктивно – связанными (или магнитно-связанными).
Степень индуктивной связи двух элементов цепи характеризуется коэффициентом связи k, который определяется отношением:
=<1
где М - взаимная индуктивность элементов цепи, Гн.
- индуктивности элементов, Гн.
Вообще, взаимной индуктивностью первой и второй катушек называется отношение добавочного потокосцепления второй катушки к току первой катушки:


Индекс 12 показывает, что взаимная индуктивность наводится в первой катушке от действия магнитного потока второй катушки.
Опыт показывает, что:
Взаимная индуктивность в линейных электрических цепях не зависит от направлений и значений токов, и определяется только конструкцией катушек их взаимным расположением. Индуктивность катушки :

При составлении уравнений для магнитно-связанных цепей необходимо знать, согласно или встречно направлены потоки самоиндукции и взаимоиндукции. Правильное заключение об этом можно сделать, если известно направление намотки катушек на сердечнике и выбрано положительное направление токов в них.
Последол-ное соединение индуктивно связанных элементов цепи
Две катушки с сопротивлениями R1 и R2, индуктивностями L1 и L2 и взаимной индуктивностью М соединены последовательно. Возможны два вида их включения: согласное (рис. 4.4а) и встречное (рис. 4.4б).
При согласном включении токи в обоих элементах в любой момент времени направлены одинаково относительно одноименных выводов, поэтому магнитные потоки самоиндукции Ф11 (или Ф22) и взаимной индукции Ф12 (или Ф21), сцепленные с каждым элементом, складываются. При встречном включении токи в обоих элементах цепи в любой момент времени направлены противоположно относительно одноименных выводов, поэтому магнитные потоки самоиндукции и взаимной индукции, сцепленные с каждым элементом, вычитаются.
Индуктивность двух последовательно соединенных индуктивно связанных элементов определяется выражением:

где и - потокосцепления первого и второго элементов, причем
Знак плюс относится к согласному, а знак минус ко встречному включению. Следовательно,
L = L1 + L2 ± 2M. Полное сопротивление при согласном включении больше, чем при встречном. Напряжения на элементах имеют по три составляющ
Параллелное соединение индуктивно связанных элементов цепи
Две катушки с сопротивлениями R1 и R2, индуктивностями L1 и L2 и взаимной индуктивностью М соединены параллельно, причем одноимённые выводы присоединены к одному и тому же узлу (рис. 4.7).
При выбранных положительных направлениях токов и напряжения получаем следующие выражения:


где
В этих уравнениях комплексные напряжения и взяты со знаком плюс, так как положительные направления этих напряжений (выбранные сверху вниз) и тех токов, от которых эти напряжения зависят, ориентированы относительно одноименных выводов одинаково. Решив уравнения, получим



Откуда следует, что входное комплексное сопротивление рассматриваемой цепи


РАСЧЁТ ТРЁХФАЗНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
Основные понятия и определения
Объединение в одной линии электропередачи нескольких цепей переменного тока с независимыми источниками электроэнергии называется многофазной системой.
Трёхфазной симметричной системой Э.Д.С. называется совокупность трёх Э.Д.С. одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1200 . Эти три Э.Д.С. можно изобразить на временной (рис.5.1) и векторной (рис. 5.2.) диаграммах.


Трёхфазные симметричные системы Э.Д.С. получаются с помощью трёхфазного генератора, в котором имеются три самостоятельные обмотки, расположенные на статоре, и сдвинутые относительно друг друга в пространстве на 1200. В центре статора вращается магнит (рис. 5.3). Форма магнита такова, что магнитный поток, пронизывающий каждую катушку, изменяется по синусоидальному закону. Тогда по закону электромагнитной индукции в катушках будут индуцироваться Э.Д.С. равной амплитуды и частоты, отличающиеся друг от друга на 1200 .


Комплексы действующих значений этих Э.Д.С.:




Основные схемы соединения трёхфазных цепей
Существуют различные способы соединения обмоток генератора с нагрузкой, но в целях экономии обмотки трёхфазного генератора соединяют в звезду или в треугольник.
При соединении в звезду концы обмоток генератора объединяются в одну точку О, которая называется нулевой, или нейтральной.



Ниже приведены схемы соединения трёхфазного генератора с трёхфазной нагрузкой по схеме звезда без нулевого провода
1) Точку, в которой объединяют три конца трёхфазной нагрузки при соединении её звездой, называют нулевой точкой нагрузки и обозначают О’.
2) Провода, соединяющие точки А, В, С генератора с точками а,b,с нагрузки, называют линейными.
3) Нулевым проводом называют провод, соединяющий нулевые точки генератора и нагрузки
4) Линейными токами Iл называют токи текущего линейным проводам (их обозначают , , )
5) Фазным напряжением Uф называют напряжение между началом и концом фазы или между линейным и нулевым проводом (их обозначают ).
6) Линейным напряжением UЛ называют напряжение между двумя линейными проводами ( их обозначают ).
7) Фазные и линейные напряжения связаны между собой выражениями

В симметричной системе фазных напряжений система линейных
напряжений тоже симметрична: равны по величине
и сдвинуты относительно друг друга на 1200

Таким образом, получим общее соотношение между линейными и фазными напряжениями в симметричной системе


Методы расчета трёхфазных цепей
Соединение звездой
Нагрузка в трёхфазной цепи может быть:
1) симметричной, если сопротивления фаз нагрузки одинаковы по характеру и значению;
2) несимметричной, если сопротивления фаз нагрузки различны.
Рассмотрим наиболее общий случай расчёта цепи с нулевым проводом, сопротивление которого ZN
Если нужно учесть сопротивления линейных проводов и фаз источника их можно отнести к нагрузке, прибавив к сопротивлениям последнего по правилам сложения комплексных чисел. Наиболее удобным методом расчёта в данном случае является метод узлового напряжения:

Напряжения на фазах нагрузки:


Методы расчета трёхфазных цепей
Соединение треугольником
Трёхфазная цепь при соединении источника и приёмника треугольником имеет разветвлённую многоконтурную схему.
Расчёт этой сложной цепи значительно упрощается, если не принимать во внимание сопротивление проводов.
В этом случае напряжения на фазах приёмника равны соответствующим напряжениям источника и, как правило, представляют собой симметричную систему.
Если трёхфазная система напряжений, приложенных к приёмнику, известна, то фазные токи в симметричном приёмнике определяются порознь по известным формулам:

Токи в линейных проводах:

Если же сопротивления линейных проводов необходимо учитывать, то для расчёта цепи следует преобразовать треугольник сопротивления нагрузки в звезду, определить токи в линейных проводах с учётом формулы и затем найти напряжения и токи фаз нагрузки. При симметричной нагрузке фаз достаточно провести расчёт одной фазы.
Измерение мощности в трёхфазных цепях
Активной мощностью трехфазной системы назы¬вают сумму активных мощностей ее отдельных фаз:

При симметричной нагрузке мощности отдельных фаз равны между собой, а общая мощность опреде¬ляется как

На практике мощность трехфазной системы чаще выражают через линейные, а не через фазные токи и напряжения.
Для трехфазной системы также справедливы сле¬дующие соотношения для полной, активной и реак¬тивной мощностей, соответственно:

Существуют несколько методов измерения мощ¬ности трехфазной системы, у каждого из них своя область применения.
Способ одного ваттметра.
Используют для измерения мощности при симметричной нагруз¬ке, соединенной звездой с доступной нулевой точ¬кой
В этом случае общая мощность трехфазной систе¬мы равна утроенному показанию ваттметра:


2) Определить показания вольтметра pV и указать, в каких режимах работают источники ЭДС (Ri, Ом, Ej, B)
По второму закону Кирхгофа:
E1- E2 = R1I + R2I = (R1+ R2)I,
I =(E1- E2) /(R1+ R2) == (60-10) / (30+20)
Показание вольтметра не зависит от того, какая часть схемы рассматривается с целью его определения. Для определения показания вольтметра составляется уравнение, согласно II закону Кирхгофа
Е1 = R1 I + Uab , Uab = E1 – R1 I
или

Ключевые слова -


ФНГ ФИМ ФЭА ФЭУ Яндекс.Метрика
Copyright 2021. Для правильного отображения сайта рекомендуем обновить Ваш браузер до последней версии!