ФЭА / АИТ / Условия эксплуатации систем и их влияние на процесс проектирования
(автор - student, добавлено - 8-01-2014, 18:39)
Условия эксплуатации систем и их влияние на процесс проектирования
Системы автоматики эксплуатируются в условиях воздействия на них различных факторов, из которых можно выделить две группы: объективные, определяемые средой, и субъективные, определяемые обслуживанием системы (рис. 4).
Рисунок 4 – Эксплуатационные факторы, воздействующие на системы
В зависимости от особенностей применения системы автоматики подразделяют на: стационарные, наземные, автомобильные, судовые (корабельные), авиационные, космические и т.п. Естественно, что условия эксплуатации, а следовательно, и требования к системам будут различными для каждого из перечисленных видов. Так, например, системы стационарного типа не будут испытывать механических перегрузок, столь характерных для систем нестационарного типа (автомобильной, авиационной и т.п.). Могут при этом существенно отличаться и климатические условия эксплуатации. В зависимости от временного режима различают системы разового действия, дежурные системы и системы непрерывного действия. Если системы разового действия используются по своему целевому назначению только 1 раз, то дежурные системы характеризуются многоразовым действием. Режим работы дежурных систем включает в себя как период ожидания (дежурства), так и период использования по прямому назначению (рабочий режим). Примером подобных систем может быть система слепой посадки самолетов. Системы непрерывного действия используются по своему целевому назначению непрерывно в течение всего заданного срока эксплуатации. Примером последних могут быть системы управления непрерывными процессами, такими как металлургические, нефтехимические и т.п. Системы автоматики в зависимости от условий эксплуатации подразделяют также на обслуживаемые, когда в процессе эксплуатации возможно проведение профилактических и ремонтных работ, и необслуживаемые. АСУ ТП классифицируются на уровни классов 1, 2 и 3. К классу 1 (АСУ ТП нижнего уровня) относятся АСУ ТП, управляющие агрегатами, установками, участками производства, не имеющие в своем составе других АСУ ТП (характерный пример – регуляторы). К классу 2 (АСУ ТП верхнего уровня) относятся АСУ ТП, управляющие группами установок, цехами, производствами, в которых отдельные агрегаты (установки) имеют свои локальные системы управления, не оснащенные АСУ ТП класса 1. К классу 3 (АСУ ТП многоуровневые) относятся АСУ ТП, объединяющие в своем составе АСУ ТП классов 1, 2 и реализующие согласованное управление отдельными технологическими установками или их совокупностью (цехом, производством). Построение систем автоматизации по уровням управления определяется как требованиями снижения трудозатрат на их реализацию, так и целями (критериями) управления технологическими объектами. В общем случае любая система может быть представлена конструктивной, функциональной или алгоритмической структурой. В конструктивной структуре системы каждая ее часть представляет собой самостоятельное конструктивное целое. Примерами изображения конструктивных структурных схем системы автоматизации могут служить рисунки 6…8. В функциональной структуре каждая часть предназначена для выполнения определенной функции, в алгоритмической – для выполнения определенного алгоритма преобразования входной величины, являющегося частью алгоритма функционирования системы в целом. В проектах автоматизации изображают конструктивные структурные схемы с элементами функциональных признаков. Полные сведения о функциональной структуре с указанием локальных контуров регулирования, каналов управления и технологического контроля приводятся в функциональных схемах. Алгоритмические структурные схемы по контурам регулирования крайне необходимы при производстве наладочных работ систем автоматизации.
|
|